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Abstract 
In the search for optimal designs in industrial experiments, situations like non-linearity and non-differentiability 
often arise that defy classical optimisation algorithms. In this study, Genetic Algorithm (GA) was used to select 

n-point D- and A- optimal exact designs in regular and irregular experimental regions for standard regression 

models. Before the application of GA in the selection of the optimal designs, requirements such as design region, 

optimality criterion, design size, population size, crossover and mutation probabilities were specified. Based on 

these specifications GA selected n-point D- and A-optimal exact designs by iteratively applying three operators; 

selection, crossover and mutation probabilities, on an initial population of designs generated from a specified 

design region. Metrics such as relative efficiency of the D- and A-optimality criteria were used to determine the 

performance of GA compared to those obtained from existing algorithms. Results obtained show that GA 

compared well and even better, with the line search algorithm, Fedorov algorithm, modified Fedorov algorithm, 

k-exchange algorithm and the computer algorithm reported in the literature in the search for D- and A-optimal 

designs. The study recommended among others, that GA should be used for the selection of optimal designs when 

the model comprised of more than two factors. 
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1. Introduction 
In many industrial settings, experiments are conducted to characterise the relationships between design factors 

and the targeted response, with the goal of identifying treatments or design factor concentrations that will produce 

the targeted response variable's desired effect. Typically, an experiment's size grows quickly as the number of 

parameters and treatments increases. This, however, will lead to more costs involving time, finance and material, 
in running the experiment (Upperman, 1993; Collins, Dziak & Li, 2009). Therefore, cutting down on the number 

of treatments is necessary to save money and time when conducting experiments. Due to this, it is essential to 

maintain a manageable experimental size, which necessitates the choice for an optimal design (Upperman, 1993; 

Borkowski, 2003; Collins et al., 2009). 

Choosing n points or treatments from a list of candidate-points, N for inclusion in a design is one of the 

goals of optimal design (Berger & Wong, 2009, p. 280; Nsude, 2016). The fundamental principle behind this is 

based on the theory of optimum design, which holds that by "optimally" choosing treatments of the input factor, 

statistical inference about measures of interest can be enhanced (Ugbe & Chigbu, 2012). There are two methods 

for this selection of n points design: depending on the type of probability measurements, attached to the levels or 

treatments of the experimental factors at the design point. It can be either accurate (discrete) or continuous 

(approximate) (𝜉𝑛 or 𝜉). The definition of an exact design is a 𝑛-point design with a probability measure, 𝜉𝑛 on 

the region of interest, 𝜒̃, where each point of the design is assigned an equal weight, 1/n, and 𝑛𝜉𝑛 is a non-negative 

integer (Cook & Nachtsheim, 1980). Iwundu and Chigbu (2012) indicated the region of interest of n-exact design 

n the 𝜒  by Ξ𝜒̃𝑛  . Conversely, though, an approximate design is a probability measure, 𝜉, on 𝜒̃ such that ∫𝜒̃ (𝑑𝑥) = 1 

and 𝑛𝜉 not have to be a whole number (Iwundu & Chigbu, 2012). 

In actuality, before such an ideal approximation design can be put into reality, all the weights at an optimal 

design point in an approximate design must be multiplied by n and rounded to whole numbers such that they all 

add to n (Kiefer, 1974; Berger & Wong, 2009, p. 30). Vandenberghe and Boyd (1999) provided details. However, 

this work will focus on exact designs, because they are the most practical designs that experimenters utilise. In 

other words, the replicated points at 𝑥𝑖 are non-negative integers. 



Proceedings of the 2nd International Conference on Statistical Theory, Methods 

and Applications, 25th – 26th April, 2024 

 

66 

 

As earlier mentioned, the process of creating ideal precise designs necessitates choosing n points, 𝑥, from 

a given region of interest, 𝜒 , 𝑥 ∈ 𝜒 . The method used for this choice optimizes the Fisher's information matrix, 𝑿′𝑿 (Nsude, 2016). Careful selection of 𝑥 from 𝜒  is attainable by the use of computations to look for the n-optimal 

design points in 𝜒 . Algorithms are crucial in the process of choosing near-optimal experimental designs because 

they minimise the number of runs required to estimate the required parameters, which lowers the cost of 

conducting experiments. 

Algorithms carefully choose an optimal design from the pool of possible designs using the optimality 

criterion as a guide. The most well-known optimality criteria, which are all based on Fisher's information matrix, 
are D-, A-, E-, G-, and I- optimality criteria (Rady, Abd El-Monsef & Seyam, 2009; Oladugba & Madukife, 2009). 

One of the most widely used criteria, the D-optimality criterion, is to maximise the determinant of the matrix for 

the given problem, or reduce the determinant of the reciprocal of Fisher's information matrix. The confidence 

volume of each parameter in the model tends to decrease when applying the D-optimality criterion. 

The A-optimality criterion pertains to the minimisation of the trace, which is the sum of the diagonal 

elements of the information matrix's inverse. The average variance of parameter estimates is lowered as a result 

of this optimality criterion. The G- and I-criteria are connected to the design's prediction variance, whilst the E-

criterion aims to maximise the information matrix's minimum eigenvalue. While the I-optimality criterion lowers 

the average prediction variance across the design space, the G-optimality criterion aims to reduce the highest 

prediction variance overall designs, in the design space. 

In practical situations, the most significant and often used design criterion is the D-optimality criterion 
(Rady et al., 2009; Ugbe & Chigbu, 2012). Scholars believe that, in certain situations, the A-optimality criterion 

does better than the D-optimality criterion. According to research presented by Jones, Allen-Moyer, and Goose 

(2020), screening designs that meet the A-optimality criterion are deemed more desirable than those that meet the 

D-, I-, and G-optimality criteria. They also concluded that, in comparison to the D-optimality criterion, A-optimal 

designs typically contain more independent columns in their model matrices. Because the A-optimal criterion is 

preferred for screening designs and the D-optimal criterion has a wider use, this work is restricted to D- and A-

optimality criteria. Screening designs constitute one of the most often utilised strategies in industrial testing. 

Screening designs are usually utilised in the early phases of an experiment to narrow down numerous potentially 

significant variables and their interactions to a select few important ones. Finding an active part of the components 

is the goal of screening designs (Jones et al., 2020). 

The D- and A-optimal designs have been identified using a variety of techniques. Nonetheless, the majority 
of research was concentrated on determining the D-optimal design in comparison to the A-optimal design. Among 

the techniques used are the exchange algorithms (Fedorov, 1972; Mitchell, 1974; Cook & Nachtsheim, 1980; 

Johnson & Nachtsheim, 1983). Generally, an exchange algorithm starts with an approximate initial design, and 

then iteratively changes the current design by exchanging current design points with new points from the region 

of interest. The algorithm ends when a predetermined condition is met, such as a specified number of iterations 

or the observation of an insignificant alteration in the objective criteria value across iterations. The exchange-type 

algorithms employ direct search methods, and there is always a possibility that the solution found is not globally 

optimal; in other words, there is no assurance that the “true” optimum design will be identified. So, it is also 
necessary to restart the algorithms several times with different starting points to increase the chance of finding a 

design that is closer to the global optimum (Montepiedra, 1998). Furthermore, the exchange-type algorithms will 

fail to reach global optimum when the regression model representing the problem to be optimised has three or 

more explanatory variables (Broudiscou et al., 1996). Other issues associated with the exchange algorithms as 
highlighted by Iwundu and Chigbu (2012) consist of cycling, delayed convergence, and inability to reach the 

intended optimum. In the same vein, Nsude (2016) noted that obtaining D-optimal designs presents a challenge 

for all exchange algorithms. It is either trapped at the local optimum or slow and computationally challenging. 

In order to mitigate some of the problems associated with exchange-type algorithms in finding D- optimal 

designs, researchers have done several works in the past. For example, Iwundu and Chigbu (2012) constructed 

D-optimal n-point exact designs using a hill-climbing combinatorial algorithm. In finding D-optimal designs, 

Iwundu and Chigbu (2012) adopted the method of Onukogu and Iwundu (2007); it consists of organizing the 𝜒̃'s 

support points according to how far apart they are from the middle of 𝜒 . Finding a collection of squared 

information matrices having matching diagonal elements was possible and rapid by grouping support points into 

H concentric balls. This made it possible to compare elements inside the group according to their absolute values 
that are off-diagonal (Onukogu & Iwundu, 2007). Nsude (2016) obtained D-optimal designs in continuous space 

by applying a line search technique; a D-optimal design was reached with minimal iteration. The results of Nsude 

(2016) compete favourably well with the works of Atkinson and Donev (1992) and Atkinson, Donev and Tobias 



Proceedings of the 2nd International Conference on Statistical Theory, Methods 

and Applications, 25th – 26th April, 2024 

 

67 

 

(2007). However, line search algorithms apply when the objective function to be optimized is differentiable 

(Jason, 2020). If not, it will be challenging for the algorithm to determine the global optimum for these kinds of 

issues (Nsude, 2016; Civicioglu, 2013). 

There are non-exchange-type algorithms as well as algorithms that are not constrained by differentiability; 

for instance, the genetic algorithms (GAs). The GAs are gaining widespread popularity among scientists owing 

to their many advantages over exchange-type algorithms, as well as the line search algorithm. Optimisation 

problems like non-linear and non-differentiable functions, irregular design space structure, can be solved with 

genetic algorithms, etc; more so, due to their ability to find a near-optimal design where the conventional 

exchange algorithms fail to do so: see, for example, Limmun, Borkowski and Chomtee (2012), Borkowski (2003) 

and Nambiar (2015). 

A genetic algorithm (GA) is an evolutionary search approach based on condensed biological population 
genetics laws and evolution ideas (Borkowski, 2003). A GA keeps track of several viable solutions and selects 

the most efficient ones from this population to arrive at a close-to-optimal solution. Following the selection 

process, reproduction operators integrate and/or modify the top candidate solutions to create new solutions for 

the following generation. Up until a workable solution is found, the procedure is repeated with each generation 

producing better ones (Borkowski, 2003). Near-optimal D- and A-exact n-point designs are chosen using a GA in 

this work. The chosen designs' efficiencies are computed in comparison to well-known optimal designs with 

identical design sizes, models, and spaces. 

The aim of the study is to select n-point D- and A-optimal designs using genetic algorithm. Specifically, the 

objectives are to: select n-point D- and A-optimal design using genetic algorithm; and compare the efficiency of 

the selected designs with those selected using some of the existing algorithms. 

 

2. Methodology 

2.1 Application of GA in the Selection of n-point Exact Designs 
A typical experimental design is defined in the experimental space {𝜒, 𝐹𝑥, Σ𝑥}; 

where, 

                                                                      𝜒 = {𝑥}                                                                            (2.1) 

 is the space of all possible trials or design region or experimental region; 𝑥 is a row of p-factor experiment; 

                                                                   𝐹𝑥 = {𝑓(𝑥)}                                                                        (2.2) 

is a linear space of finite dimensional continuous function defined on 𝜒 so that at any given design point, 𝑥  ∈ 𝜒, 

a random variable, 

                                                           𝑦(𝑥) = 𝜷𝑓(𝑥) +  𝜀                                                                    (2.3) 

is defined on 𝜒;  

where,  𝑦(𝑥) is the response variable observed at a designed point, 𝑥  ∈ 𝜒; 𝜷 is a vector of p unknown constant coefficients referred to as parameters; 𝜀 is the random experimental error; and  

                                                Σ𝑥 = {𝜎𝑥2}                                                                                        (2.4) 

is the space of non-negative continuous random observation error also defined on 𝜒. 

The interest here is to find n-point designs such that the variance-covariance matrix is minimised or the 

resultant information matrix, 𝑿′𝑿, is maximised. Given the space of possible trials, 𝜒, the objective function or 

optimality criterion, Φ{. }, design points, 𝑛, crossover probability, 𝑃𝑐, and mutation probability, 𝑃𝑚, the GA 

iteratively search for an n-point design, 𝜉𝑛∗ , from 𝜒 which maximises the determinant of 𝑴(𝜉𝑛)  ∀ 𝜉𝑛   ∈  𝛯, and 

also a design, 𝜉𝑛∗ , that minimises the trace of {𝑴−𝟏(𝜉𝑛)} ∀ 𝜉𝑛   ∈  𝛯. Thus, given the space of possible trials or 

experimental region, 𝜒, the objective function or optimality criterion, Φ{. }, population of designs, 𝑀, design 

points, 𝑛, crossover probability, 𝑃𝑐, and mutation probability, 𝑃𝑚, GA generates optimal exact designs via the 

following steps:  

Step 1. Randomly generate the initial population. 

Here, 𝑀 designs, {𝜉𝑛1 , … , 𝜉𝑛𝑀}, were randomly generated uniformly from 𝜒 = [. ] as the initial population of 

designs. 

 

Step 2. Selection probability. 

For each 𝑖 = 1, 2, … , 𝑀, calculate the fitness of each design in the initial population as 
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                                     𝑓𝑖𝑡𝑖 = Φ {𝜉𝑛 𝑖 }∑ Φ{𝜉𝑛𝑀}𝑀𝑖=1                                                                                       (2.5) 

where 𝛷 {𝜉𝑛 𝑖 } is the value of the objective criterion of the design, 𝜉𝑛 𝑖 , after which the corresponding cumulative 

probabilities, 𝑞𝑚 = ∑ 𝑓𝑖𝑡𝑖𝑀𝑖=1 , are computed and a random number from U [0, 1] is drawn. Hence, selecting 

designs from the initial population into the starting population is guided by 𝑞𝑚 and the random values drawn from 

U [0, 1]. That is, if a particular cumulative probability, 𝑞𝑚, is higher than or equal to the random number, r, then 

that design is selected. Due to this selection process, designs with lesser fitness will not be selected; whereas, 

designs with better fitness can even be selected more than once. 

 

Step 3. Crossover probability. 

Designs that made it into the starting population, 𝑀′, are randomly altered by reproduction. Two designs say, 𝜉𝑛 1′and 𝜉𝑛 2′, are randomly selected from the starting population of designs, 𝑀′, as two parents that will mate  or do 

crossover or exchange their genes (design point) to form two new offsprings or designs. The selection is based 

on a random number, 𝑟 , generated from U [0, 1], and a specified crossover probability, 𝑃𝑐*. Assuming that 𝑟 is 

associated with 𝜉𝑛 1′ given that 𝑟 ≤  𝑃𝑐*, then select 𝜉𝑛 1′ as parent 1. After selecting 𝜉𝑛 1′ as parent 1, 𝜉𝑛 2′ is randomly 

selected from 𝑀′ as parent 2. After selecting 𝜉𝑛 1′ and 𝜉𝑛 2′, a random integer, 𝑟 ∗, within 1 𝑡𝑜 𝑛 is generated to 

indicate the position where 𝜉𝑛 1′and 𝜉𝑛 2′ are to split up for crossover. At that point, part of 𝜉𝑛 1′ is joined with part of 𝜉𝑛 2′ to produce offsprings or designs denoted as 𝑀′𝑜𝑓. Then, 𝑀′𝑜𝑓 and 𝑀′ are combined to form the population of 

designs, 𝑀′′, whose members were sorted based on the objective function or optimality criterion, Φ{. }, so that 

the population of designs, 𝑀′′′, with the same size  as the starting population of designs, 𝑀′, are extracted from, 𝑀′′ for mutation. 
 

Step 4. Mutation. 

Mutation is done according to a specified mutation probability, 𝑃𝑚*. This operation is done on an individual 

design point (gene) that is randomly selected. First, a random integer, 𝑟∗, within 1 to 𝑛 is generated for the 

mutation position. Again, a random number, r, is generated uniformly. If for any given design,  𝑃𝑚*≥ 𝑟, then, 

that design point is replaced with a random point from 𝜒 = [. ] which will yield new population of designs 𝑀′′′ 
that will undergo step 2 to 4. 

 

Step 5. Repeat step 2 to 4 for jth generations, for 𝑗 = 1, … , 𝑛𝑡ℎ  generations. 

 
Step 6. Stopping criteria (Stop). 

Stop when there is no improvement with respect to the values of the optimality criterion, Φ{. }, in the subsequent 

generations. 

 

2.2 Number of Distinct Design Points 
Various ideal designs may necessitate varying quantities of design points. It is evident that any model aiming to 
estimate p parameters must have a minimum of p distinct design points. The ideal number of distinct design 

points, according to various models and optimality criteria, falls between p and 
𝑝(𝑝 +1)2  (Pukelsheim, 1993, p. 190). 

Designs with less than p distinct design points and more than 
𝑝(𝑝 +1)2  distinct design points may suffer from a 

serious loss of efficiency (Berger & Wong, 2009, p. 43). 
 

2.3 Performance of GA 
Verifying that a design is optimal is crucial after one has been proposed. This is because not all optimal designs 

obtained numerically are error-free (Nsude, 2016). As a result, a technique for comparing the "optimal design" 

and a user-specified design with each other must be used. In this work, the D-efficiency and A-efficiency were 

used to compare algorithms. A metric called relative efficiency allows one to compare the efficiencies of two 
different designs (Berger & Wong, 2009, p. 44). The best design is compared to a user-specified design using 

design efficiency. Design efficiency is a number that, in theory, ranges from 0 to 1. The closer an arbitrary design 

is to 1, the better. For instance, if the model in question has p parameters and the D-criterion is the goal of the 

experiment, the relative effectiveness of the user-specified design, 𝜉∗ , in comparison to the D-optimal design, 𝜉, 

is: 
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                                                  𝐷𝑒𝑓𝑓 =  {|𝑴(𝜉∗)||𝑴(𝜉)| }1 𝑃⁄
                                                                             (2.6) 

Where |𝑴(𝜉∗)| and |𝑴(𝜉)| are the determinant of the Fisher information matrices of the user specified design, 𝜉∗ 

and optimal design, 𝜉, respectively, and p is the number of parametres in the regression equation (Drain, Carlye, 

Montgomery, Borror & Cook, 2004). D-efficiency provides a way to compare different designs, even if they have 

varying numbers of runs. One can formulate comparable relative efficiency for the other optimality criteria, 

omitting the power (1 𝑝⁄ ) in the process. For instance, the relative efficiency for the A-criterion is: 

                                           𝐴𝑒𝑓𝑓 =  { 𝑡𝑟𝑎𝑐𝑒|𝑴−𝟏(𝜉)|𝑡𝑟𝑎𝑐𝑒|𝑴−𝟏(𝜉∗)|}                                                                             (2.7) 

 

3. Results and Discussion 

3.1 Problem 1 
Consider a quadratic regression function in one factor on a regular geometric space: 

                                  𝑓(𝑥) =  𝛽0 +  𝛽1𝑥 +  𝛽2𝑥2 ; −1 ≤ 𝑥 ≤ 1;                                                      (3.1) 

following the Pukelsheim (1993) rule, 3-point, 4-point, 5-point, and 6-point exact D-optimal and A-optimal 

designs were obtained as shown on Tables 1 and 2, respectively. 

Table 1. Summary of 3-, 4-, 5- and 6-point D-optimal designs for (𝛽0,  𝛽1𝑥,  𝛽2𝑥2) 

s/n n 𝜉𝑛∗ 𝑚𝑎𝑥 {𝑑𝑒𝑡[𝑴(𝜉𝑛∗ )]} 
1 3 (0, 1, -1) 3.997855 
2 4 (-1.00, 0.00, 1.00, -0.01) 7.997562 

3 5 (-1, 0, 0, 1, -1) 15.99058 

4 6 (1, 0, -1, -1, 1, 0) 31.95087 

 

Table 2. Summary of 3-, 4-, 5- and 6-point A-optimal designs for (𝛽0 ,  𝛽1𝑥,  𝛽2𝑥2) 

s/n n 𝜉𝑛∗  𝑚𝑖𝑛{𝑡𝑟𝑎𝑐𝑒[𝑴−𝟏(𝜉𝑛∗ )]} 
1 3 (1, 1, 1) 0.3333376 

2 4 (1, 1, 1, 1) 0.2500694 

3 5 (-1, 1,  -1,  -1) 0.2000622 

4 6 (1, 1, 1, 1, 1, -1) 0.1667201 

 
Results in Table 1 show the generated D-optimal designs with their associated determinant values. Similarly, the 

generated A-optimal designs with their associated traces can also be seen displayed in Table 2. Comparing the 

design, (- 1.00, 0.00, 1.00, -0.01) obtained by GA in this work for 4-point D-optimal design, to the design, (- 1, 

0.0048, 0, 1) obtained by Nsude (2016), it was observed that the design generated by GA in this work and the 

work of Nsude (2016) are not the same. This could be attributed to the already made starting design points adopted 

by Nsude (2016) in generating the optimal design as used by Atkinson and Donev (1992) and Atkinson, Donev 

and Tobias (2007). It was also observed that a determinant value of 7.9999 was attained in generating 4-point D-

optimal designs in the work of Nsude (2016), while a determinant value of 7.997562 was attained by GA in 

generating 4-point D-optimal designs. This indicates that GA compete favourably well with the line search 

algorithm of Nsude (2016) in the selection of 4-point D-optimal designs. 

 

3.2 Problem 2 
Consider a quadratic regression function in two factors on a regular geometric space: 

                        𝑓(𝑥) =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽12𝑥1𝑥2 +  𝛽11𝑥12 +  𝛽22𝑥22 ; −1 ≤ 𝑥1, 𝑥2 ≤ 1;                (3.2) 

Following the Pukelsheim (1993) rule, 6-point, 7-point, 8-point and 9-point exact D-optimal and A-optimal 

designs were obtained as shown on Tables 3 and 4, respectively. 
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Table 3. Summary of 6-, 7-, 8- and 9-point D-optimal designs for (𝛽0 ,  𝛽1𝑥1,  𝛽2𝑥2, 𝛽12𝑥1𝑥2, 𝛽11𝑥12 , 𝛽22𝑥22) 

s/n n 𝜉𝑛∗  𝑚𝑎𝑥 {𝑑𝑒𝑡[𝑴(𝜉𝑛∗ )]} 
1 6 (1.00, 0.39,  -1.00, -1.00, 1.00, -0.13), (1.00, -1.00, -1.00, 1.00, -0.40, 0.13) 265.8401 

2 7 (1.00, 1.00, -1.00,  -0.09, 1.00, 0.07, -1.00), (1.00, -1.00, -1.00, -0.09, 0.07, 

1.00, 1.00) 

976.1774 

3 8 (0.08, -1.00, 1.00, -1.00, 1.00, 0.08, -0.21, 1.00), (1.00, 1.00, -1.00, -1.00, 
0.00, -1.00, 0.00, 1.00) 

2345.087 

4 9 (1, 1, 0, -1, 0, -1, 0, -1, 1), (1, -1, 1, 0, 0, 1, -1, -1, 0) 5137.131 

 

Table 4. Summary of 6-, 7-, 8- and 9-point A-optimal designs for (𝛽0 ,  𝛽1𝑥1,  𝛽2𝑥2, 𝛽12𝑥1𝑥2, 𝛽11𝑥12, 𝛽22𝑥22) 

s/n n 𝜉𝑛∗  𝑚𝑖𝑛{𝑡𝑟𝑎𝑐𝑒[𝑴−𝟏(𝜉𝑛∗ )]} 
1 6 (0.65, -0.96, 0.95, 0.18, 0.15, -0.06 ), (0.98, -0.79, -0.23, -0.95, 0.51, -

0.04) 

3.908065 

2 7 (-0.01, 0.06, -0.35, 0.94, 0.02, -0.90, -0.85), (0.08, 0.95, -1.00, -0.75, -

0.18, 0.96, 0.05) 

3.080716 

3 8 (-0.04, 0.99, 0.06, -0.99, 0.96, 0.18, -0.98, -0.18), (0.04, 0.97, -0.02, -0.98, 

-0.18, -1.00, 0.15, 1.00) 

2.053511 

4 9 (-0.05, -1.00, -1.00, -0.99, -0.08, 0.99, 0.99, -0.08, 0.13), (1.00, -0.98, 

0.06, 1.00, 0.09, 0.99, -0.10, 0.09, -0.97) 

1.79235 

 

Tables 3 and 4 are the summary reports for the selected sample optimal points for both D- and A-optimal designs. 

Comparing the 6-point D-optimal design, (1, 1), (0.39, -1), (-1, -1), (-1, 1), (1, -0.4), (-0.13, 0.13) obtained by GA 

in this work with a determinant value of 265.8401, and the design (-1, 1), (-1, -1), (1, -1), (1, 1), (0, -1), (-0.0178, 

0.0001) obtained by Nsude (2016) with a determinant value of 256.0000. The determinant value for the 6-point 

D-optimal design generated by GA is higher than the determinant value generated by the line search algorithm of 
Nsude (2016).  

 

3.3 Problem 3 
Consider a quadratic regression function in three factors on a regular geometric space: 

    𝑓(𝑥) =  𝛽0  + 𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽12𝑥1𝑥2 +  𝛽13𝑥1𝑥3 + 𝛽23𝑥2𝑥3 +  𝛽123𝑥1𝑥2𝑥3 +  𝛽111𝑥12 +  𝛽222𝑥22 + 𝛽333𝑥32 ; −1 ≤ 𝑥1𝑥2𝑥3 ≤ 1                                                                                                                          (3.3) 

Following the Pukelsheim (1993) rule, 11-point, 12-point, 13-point and 14-point exact D-optimal and A-optimal 

designs were obtained as shown on Tables 5 and 6, respectively. 

Table 5. Summary of 11-, 12-, 13- and 14-point D-optimal designs for (𝛽0 ,  𝛽1𝑥1, 𝛽2𝑥2, 𝛽3𝑥3, 𝛽12𝑥1𝑥2,𝛽13𝑥1𝑥3, 𝛽23𝑥2𝑥3, 𝛽123𝑥1𝑥2𝑥3, 𝛽111𝑥12, 𝛽222𝑥22, 𝛽333𝑥32) 

s/n n 𝜉𝑛∗  𝑚𝑎𝑥 {𝑑𝑒𝑡[𝑴(𝜉𝑛∗ )]} 
1 11 (-1.00, -1.00, 1.00, 1.00, 1.00, -0.08, 1.00, -1.00, -1.00, 0.21, 1.00), (-

1.00, 1.00, 0.21, 1.00, -1.00, -0.08, -1.00,  -1.00, 1.00, 1.00, 1.00), (1.00, 

1.00, -1.00, 1.00, 1.00, 0.09, -1.00, -1.00, -1.00, -1.00, -0.21) 

12643.18 

2 12 (-1.00, 1.00, 1.00, 1.00, -1.00, -1.00, 0.01, -1.00, 1.00, -0.05, 1.00, -1.00), 

(1.00, -1.00, -1.00, 1.00, -0.05, -1.00, 0.02, 1.00, 1.00, -1.00, 0.02, -1.00), 

(1.00, 1.00, -1.00, -1.00, -1.00, 1.00, 1.00, -1.00, 1.00, -0.05, 0.01, -1.00) 

27859.1 

3 13 (1.00, -1.00, 1.00, 1.00, -1.00, 0.00, -1.00, 0.09, -1.00, -1.00, 1.00, 1.00, 

-0.04), (1.00, 1.00, 1.00, -1.00, 1.00, 0.00, 0.10, -1.00, -1.00, -1.00, -1.00, 

-0.03, 1.00), (-1.00, -1.00, 1.00, 1.00, 1.00, -1.00, 0.03, 0.03, 1.00 -1.00, 

-1.00, 1.00, 1.00) 

53118.09 

4 14 (1.00, -1.00, 1.00, 1.00, -0.26, 1.00, -1.00, -1.00, -0.06, 1.00, -1.00, 1.00, 
-1.00, -0.06), (-1.00, -1.00, 1.00, -1.00, 1.00, 0.06, 1.00, 0.26, 0.06, -1.00, 

-1.00, 1.00, 1.00, -1.00), (1.00, 1.00,  -1.00, -1.00, -1.00, -0.06, 1.00, -

1.00, 1.00, 1.00, -1.00, 1.00, -0.26, -0.06) 

71707.34 
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Table 6. Summary of 11-, 12-, 13- and 14-point A-optimal designs for (𝛽0 ,  𝛽1𝑥1, 𝛽2𝑥2, 𝛽3𝑥3, 𝛽12𝑥1𝑥2,𝛽13𝑥1𝑥3, 𝛽23𝑥2𝑥3, 𝛽123𝑥1𝑥2𝑥3, 𝛽111𝑥12, 𝛽222𝑥22, 𝛽333𝑥32) 

s/n n 𝜉𝑛∗  𝑚𝑖𝑛{𝑡𝑟𝑎𝑐𝑒[𝑴−𝟏(𝜉𝑛∗ )]} 
1 11 (-0.86, 0.32, 0.85, -0.44, -0.49, -0.25, 0.46, 0.79, -0.98, 0.21, 0.51), (-

0.86, 0.90, 0.50, 0.89, 0.92, -0.32, -0.50,  -0.82,  -0.02, 0.68, 0.11), (-

0.17, -0.76, -0.11, 0.83, 0.20, -0.68, -0.74, 0.19, -0.80, 0.74, -0.45) 

4.074543 

2 12 (-0.58, -0.92, 0.73, 0.23, -1.00, -0.06, -0.70, 0.91, -0.17, 0.04, 0.91, 

0.73), (0.73, 0.00, 0.94, 0.75, 0.75, -0.85,  -0.85, 0.10, -0.69, 0.01, 0.80, 

-0.85),  (0.87, 0.53, -0.81, 0.82, -0.75, 0.65, -0.44, 0.88, -0.88, -0.20, 

0.99, 0.14) 

3.147544 

3 13 (-0.41, 0.96, -0.81, 0.90, 0.02, 0.80, -0.42, 1.00, -0.99, 0.25, -1.00, -0.98, 
-0.05), (-1.00, -0.96, 0.99, 0.96, 0.93, 0.83, 0.90, -0.94, 0.01, -0.04, -

0.98, 0.96, -0.10), (0.95,  -0.80, -0.01, -0.92, -0.22, 0.78, 0.98, 0.97, 0.57, 

-0.05, -0.78, -1.00, -0.98) 

1.988962 

4 14 (0.95, 0.98, -0.02, -0.97, 0.92, 0.98, -0.02, 1.00, -0.98, -1.00, -0.96, -

0.07, -0.98, -0.08), (-0.91, -0.03, -0.03, -0.16, 0.99, -0.89, -0.05, 0.99, 

0.98, -0.98, -0.93, -0.98, 1.00, 0.95), (0.96, -0.06, 0.98, -0.99, 0.95, -

0.99, -0.04, -0.99, -0.95, -0.16, 0.97, -1.00, 0.88, -0.07) 

1.595788 

 

 
In Tables 5 and 6 are the D- and A-optimal designs with their associated determinant and trace values obtained 

by GA. 

 

3.4 Problem 4 
A polynomial regression function in one factor on regular geometric space: 

                         𝑓(𝑥) =  𝛽0 +  𝛽1𝑥 +  𝛽2𝑥2 +  𝛽3𝑥3 +  𝛽4𝑥4 + 𝛽5𝑥5   ; −1 ≤ 𝑥 ≤ 1;                                (3.4) 

Following the Pukelsheim (1993) rule, 6-point, 7-point, 8-point and 8-point exact D-optimal and A-optimal 

designs were obtained as shown on Tables 7 and 8, respectively. 

Table 7. Summary of 6-, 7-, 8- and 9-point D-optimal designs for (𝛽0 , 𝛽1𝑥, 𝛽2𝑥2, 𝛽3𝑥3, 𝛽4𝑥4, 𝛽5𝑥5 ) 
s/n n 𝜉𝑛∗ 𝑚𝑎𝑥 {𝑑𝑒𝑡[𝑴(𝜉𝑛∗ )]} 
1 6 (-0.28, -1.00, 1.00, 0.29, 0.77, -0.76) 0.004123225 

2 7 (-0.31, -1.00, 1.00, 0.15, 0.39, 0.77, -0.77) 0.008402192 

3 8 (-0.31, -1.00, 1.00, 0.77, -0.77, 0.16, 0.39, -1.00) 0.01680674 

4 9 (0.39  0.18 -0.77 -1.00 -0.30 -0.77  1.00 -1.00  0.77) 0.03340839 

 
Table 8. Summary of 6-, 7-, 8- and 9-point A-optimal designs for  (𝛽0, 𝛽1𝑥, 𝛽2𝑥2, 𝛽3𝑥3, 𝛽4𝑥4, 𝛽5𝑥5) 

s/n n 𝜉𝑛∗  𝑚𝑖𝑛{𝑡𝑟𝑎𝑐𝑒[𝑴−𝟏(𝜉𝑛∗ )]} 
1 6 (-1.00, 1.00, -1.00, 1.00, 1.00, -0.99) 0.1674673 
2 7 (1, 1, -1, 1, -1, 1, -1) 0.1436902 

3 8 (1.00, 1.00, -0.99, -1.00, 1.00, 1.00, 1.00, -1.00) 0.1258784 

4 9 (1.00, 0.99, 1.00, 0.99, -1.00, 1.00, -1.00, -0.99, -1.00) 0.1118684 

 

Tables 7 and 8 are the summary reports depicting the selected sample optimal points for both D- and A-optimal 

designs, with their determinants and trace values, respectively. Comparing the determinant value 0.01680674 

attained by GA for 8-point D-optimal design in this work, to the determinant value obtained by Fedorov algorithm 

(0.00000006170), modified Fedorov algorithm (0.00000006437) and k-exchange algorithm (0.00000006403) 

(Johnson & Nachtshem, 1983, p. 275), it can be seen that the GA achieved a higher determinant value relative to 

the three algorithms; implying that GA was able to search for better 6-, 7-, 8- and 9-point D- and A-optimal 

designs relative to Fedorov algorithm, modified Fedorov algorithm and k-exchange algorithm. 
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3.5 Problem 5 
Consider a Scheffé regression function in three factors on an irregular geometric space: 

                          𝑓(𝑥) =  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥3 ; {0.2 ≤ 𝑥1 ≤ 0.8; 0.2 ≤ 𝑥2 ≤ 0.8; 0.0 ≤ 𝑥3 ≤ 0.6};           (3.5) 

 9-point exact D-optimal and A-optimal designs were obtained as shown on Tables 9 and 10. 

Table 9. Summary of 9-point D-optimal designs for (𝛽1𝑥1, 𝛽2𝑥2, 𝛽3𝑥3) 

s/n n 𝜉𝑛∗  𝑚𝑎𝑥 {𝑑𝑒𝑡[𝑴(𝜉𝑛∗ )]} 
1 9 (0.8, 0.8, 0.8, 0.2, 0.2, 0.8, 0.8, 0.2, 0.8), (0.2, 0.8, 0.2, 0.8, 0.8, 0.8, 

0.2, 0.8, 0.8), (0.6, 0.0, 0.6, 0.6, 0.6, 0.0, 0.6, 0.6, 0.0) 

8.9283 

 

 

 

Table 10: Summary of 9-point A-optimal designs for (𝛽1𝑥1, 𝛽2𝑥2, 𝛽3𝑥3) 

s/n n 𝜉𝑛∗  𝑚𝑖𝑛{𝑡𝑟𝑎𝑐𝑒[𝑴−𝟏(𝜉𝑛∗ )]} 
1 9 (0.80, 0.80, 0.80, 0.20, 0.80, 0.80, 0.20, 0.21, 0.20), (0.80, 0.20, 

0.80, 0.80, 0.20, 0.20, 0.80, 0.80, 0.20), (0.00, 0.60, 0.00, 0.60, 0.60, 

0.00, 0.60, 0.00, 0.60) 

2.0597 

 

 

 
Tables 9 and 10 are the summary reports depicting the selected sample optimal points for both D- and A-optimal 

designs, with their determinants and trace values, respectively. Comparing the determinant value 8.9283 attained 

by GA for 9-point D-optimal design in this work, to the determinant value obtained by a computer algorithm 

(3.4992) in the work of Fasoranbaku and Daramola (2018), it can be seen that the GA achieved a higher 

determinant value relative to the computer algorithm reported by Fasoranbaku and Daramola (2018). In similar 

vein, comparing the trace value 2.0597 attained by GA for 9-point A-optimal design in this work, to the trace 

value obtained by a computer algorithm (2.2593) in the work of Fasoranbaku and Daramola (2018), shows that 

the GA achieved a lower trace value relative to the computer algorithm reported by Fasoranbaku and Daramola 

(2018). This goes to show that GA was able to search for better 9-point D- and A-optimal designs relative to the 

computer algorithm reported by Fasoranbaku and Daramola (2018). 

 

3.6 Performances of the GA 
Here, GA's performance on one- and two-factor quadratic models is compared to Nsude (2016) line search 

approach. On a one-factor polynomial model, GA's performance was also contrasted with that of the Fedorov, 

modified Fedorov, and k-exchange algorithms. Lastly, the efficacy of GA is contrasted with the computer 

algorithm used in the three-factor Scheffé regression model by Fasoranbaku and Daramola (2018). 

Table 11. Summary results of the performance of GA relative to algorithms studied in this work 

Design problem Algorithms Performance of GA relative to the algorithms 

used in this work 

Regions p n D-efficiency A-efficiency 

R
eg

u
la

r 

re
g
io

n
 

3 4 LSA 0.9997 - 

6 6 LSA ≥ 1 - 

5 8 FA ≥ 1 - 

MFA ≥ 1 - 

KEA ≥ 1 - 

Ir
re

g
u
la

r 

re
g
io

n
 

3 9 CA ≥ 1 ≥ 1 

p = number of parameters in model, n = number of design points, LSA= Line Search Algorithm, FA = Fedorov 

Algorithm, MFA = Modified Fedorov Algorithm, KEA = K-Exchange Algorithm, CA = Computer Algorithm 

Table 11 summarizes the performance of GA relative to line search algorithm (Nsude, 2016), Fedorov algorithm, 

modified Fedorov algorithm, k-exchange algorithm and computer algorithm (Fasoranbaku & Daramola, 2018), 

in the search for D- and A-optimal designs. For a simple design problem, results in Table 11 show that GA 

compares favourably well with the line search algorithm reported by Nsude (2016), in the search for 4-point D-
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optimal designs. Also, further results in Table 11, reveal that GA compares even better than the line search 

algorithm (Nsude, 2016), Fedorov algorithm, modified Fedorov algorithm, k-exchange algorithm and the 

computer algorithm reported by Fasoranbaku and Daramola (2018), in the search for D- and A-optimal design 

points. 

 

4. Discussion of Results 

Results from the study revealed that for a one factor quadratic model, the 4-point D-optimal design obtained 

by GA in this work, was as efficient as the 4-point D-optimal design obtained by the line search algorithm, 

reported by Nsude (2016). This is because both algorithms do not seem to differ in their determinant values 

obtained in the search for D-optimal design. However, for a two-factor quadratic model, it was also discovered 

that the 6-point D-optimal design obtained by GA was more efficient than the 6-point D-optimal design obtained 

by the line search algorithm reported by Nsude (2016). The differences in the determinant values obtained by 

both algorithms in the search for D-optimal designs, was an indication that GA (|𝑴(𝜉6)| = 265.8401) performed 

better than the line search algorithm (|𝑴(𝜉6)| = 256.0000) in the search for the D-optimal design. 

It was also established here that for a one-factor regression model of order five, GA generated 6-, 7-, 8- 

and 9-point D-optimal designs which were more efficient than the 6-, 7-, 8- and 9-point D-optimal designs 

obtained by the exchange-type algorithms such as the Fedorov algorithm, modified Fedorov algorithm and k-

exchange algorithm. This finding is in line with an earlier study by Limmun et al. (2012) who reported that GA 

performed better than the exchange type algorithms in generating D-optimal designs. 

Further findings from the study show that for a three-factor Scheffé regression model, GA generated 9-

point D- and A-optimal designs that were more efficient than the 9-point D- and A-optimal designs generated by 

the computer algorithm reported in the work of Fasoranbaku and Daramola (2018). Supporting this finding, 

Limmun et al. (2012) concluded that GA is an alternative algorithm for generating optimal designs where the 

design region is highly constrained. 
Lastly, the results from this work reveal that for a simple design problem, GA compares favourably well 

with the line search algorithm reported by Nsude (2016), in the search for 4-point D-optimal designs. Also, it was 

revealed that GA compares even better than the line search algorithm (Nsude, 2016), Fedorov algorithm, modified 

Fedorov algorithm, k-exchange algorithm and the computer algorithm reported by Fasoranbaku and Daramola 

(2018), in the search for D- and A-optimal design points as the design problem get more complex. That is, from 

a regular to irregular experimental region, from a regression model with one explanatory variable to regression 

models with more than two explanatory variables, from a model of order 1 to a model of order ≥ 2 and as the 

design size, n increases. 

 

5. Conclusion 
It has been demonstrated that the genetic algorithm employed in this work is capable of choosing D- and A-

optimal designs in both regular and irregular regions. In the search for D-optimal designs, the genetic algorithm 

compares favourably, even better than the k-exchange, Fedorov, modified Fedorov, and line-search algorithms. 

The results also demonstrate that, while looking for D- and A-optimal designs, GA compares better than the 

computer technique presented by Fasoranbaku and Daramola (2018). 

 

5. 1 Recommendations 
1. GA should be used for the selection of optimal designs when the model comprise of more than two 

factors. 

2. The selection of the best designs for polynomial models ought to be done using GA. 

3. GA should be used for the selection of optimal designs when the design region is irregular. 

4. More work is needed to be done using genetic algorithm to search for optimal designs based on other 

optimality criteria not considered herein. 

5. Work also needs to be carried out on how GA can be hybridized with other algorithms that search for 
optimal designs in order to possibly gain some improvements in the search for optimal designs. 

 

5.2 Contribution to Knowledge 
This study added to the body of knowledge by empirically demonstrating that GA can be utilised as a substitute 

algorithm for the selection of D- and A-optimal exact designs in regular and irregular experimental regions while 

taking regression models with three or more explanatory variables into consideration. 
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